
Accelerate Threat
Detection & Response
with DataLinq Engine

Contents

3	 Data & the SOC of the Future

4	 Introducing DataLinq Engine

5	 How the DataLinq Engine Works

11	 Summary

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 3www.threatquotient.com

Data & the SOC of the Future

All data is security data because data that provides the context needed to make the best
decisions and take the right actions isn’t limited to a few tools and feeds, it’s everywhere.
And harnessing all that data is problematic. No one understands this better than SOC teams
battling to work smarter and faster all while facing internal challenges including staffing
shortages, siloed organizations and disparate technologies, plus the ever-advancing threat.

Threat actors are becoming more sophisticated in their tactics, techniques and procedures.
Advances with ransomware, thanks to the ease with which it can be monetized, plus the
growing attack surface resulting from cloud, remote workers and an increasingly digital supply
chain, have all yielded even more data for SOC teams to consume.

Data has perhaps never been more important to the SOC, which is why security-forward
leaders recognize that a data-driven approach is the keystone for the SOC of the future.

When security is data driven, SOC teams have the context provided by a wide range of
sources including threats, vulnerabilities and identities, that enables them to focus on
relevant, high priority issues, make the best decisions and take the right actions. Data-driven
security also provides a continuous feedback loop that enables teams to store and use data
to improve future analysis.

Data is spread throughout the typical organization, so bi-directional integrations are required
to bring that data together into a common work surface, and an open integration architecture
provides the best approach to do this. An open approach to data integration offers the
widest access to the range of technologies, threat feeds and other third-party sources that
are relevant to detection and investigation, and also enables teams to drive response back to
those same technologies.

Response may take the form of machine automation or manual action. Teams have benefited
by automating repetitive, low-risk, time-consuming tasks, but the need for human analysis
remains. Irregular, high impact, time-sensitive investigations are best led by a human analyst
with automation simply augmenting the work. A balance between manual investigations and
machine automation ensures that teams always have the best tool for the job, while a data-
driven approach to both improves the speed and thoroughness of the work.

The need for a data-driven approach, open integration architecture, and balanced use of
automation is best when dealing with the evolving nature of attacks. As threat actors now
work across the entire organization, it’s critical for SOC teams to “connect the dots” across all
data sources, tools and teams to accelerate threat detection and response.

Data has perhaps
never been more
important to the
SOC, which is why
security-forward
leaders recognize
that a data-driven
approach is the
keystone for the
SOC of the future.

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 4www.threatquotient.com

Introducing DataLinq Engine

ThreatQ DataLinq Engine takes a unique approach to make sense of data in order to
accelerate detection, investigation and response. The DataLinq Engine starts by enabling data
in different formats and languages from different vendors and systems to work together.
From there, it focuses on getting the right data to the right systems and teams at the right
time to make security operations more data driven, efficient and effective.

It’s common to hear it stated that “Cybersecurity is a big data problem”. This can be interpreted
in a couple of ways. You can interpret the statement to mean that security problems can only
be solved with big data. However, another perspective is that cybersecurity has a set of big
problems, caused by the volume of data now available to teams. Many security problems can
be remedied by focusing on the right, smaller sets of data.

Too much data can cause a serious impediment for organizations in terms of scale and
execution. While cloud computing drastically reduces the cost of storage and processing, it
ushered in a world where data proliferation is a mounting issue. With more copies of existing
data being made continuously, each with minor modifications, in different locations, analysts
lack of a single source of truth which causes confusion. ThreatQ DataLinq Engine focuses on
augmenting key existing data stores, so that they can interoperate, reference each other, and
enable cross product and data workflows that simplify how defenders approach response.

For many years, ThreatQuotient has been operating inside a diverse ecosystem of hundreds
of different security products, threat intelligence feeds, data enrichment services and security
operations teams. We’ve seen first-hand the challenges professionals have in making sense
of security data in order to determine if, and how, to respond or contain a threat, or simply
ignore it. To better serve our customers, we’ve developed the DataLinq Engine with the
specific goal of optimizing the process of making sense out of data in order to reduce the
unnecessary volume and resulting burden.

The DataLinq Engine follows a specific processing pipeline leading to a dynamic end-state
that is constantly updating, evolving and learning. This method of processing is vastly different
from a SIEM, Log manager, or legacy Threat Intelligence Platforms.

Many security
problems can
be remedied by
focusing on the
right, smaller sets
of data.

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 5www.threatquotient.com

How the DataLinq Engine Works

To make sense out of data and operationalize it where required, we must first deconstruct
it, and then merge it into a collective many-to-many relational model that has multiple
dimensions. The engine must focus on the goal of adding more value to existing data stores
and systems that exist within the operational environment rather than merely duplicating or
replacing them.

The DataLinq Engine accomplishes this goal by working through five key stages:

Ingest

The first stage in processing data is to gain access to input data. The DataLinq Engine
supports a wide variety of sources including both internal and external; structured and
unstructured; and standard or custom (see examples at https://marketplace.threatq.com).

Parsers can be applied for industry recognized formats such as email (EML), PDFs, YARA,
OpenIOC, Snort/Suricata, XML, JSON, and plain text. The goal of the ingest stage is to identify
key elements within a data object that can be useful for understanding it.

Consider a hypothetical single security data record that includes some form of observation or
metadata in describing a threat or incident. It may be represented as a simple JSON object:

	 {
 	 	 "observation_time": 1634208760,
 		 “event_id”: 1234,
 		 "malware_family": "emotet",
 		 “md5”: d8e8fca2dc0f896fd7cb4cb0031ba249,
 		 "connection": {
 			 "from": "source.example.com",
 			 "to": "destination.example.com"
		 },
 		 “URL”: “http://example.com:80/some/call/back?id=1”,
 		 "detection type": "C2",
		 "source_identity": {
 			 "first_name": "Joe",
 			 "last_name": "smith"
 		 ,
		 “first_256_bytes_of_flow”: “xxxxxxxxxxx<omitted>”,
 		 “pe_header”: {
			 <omitted>
		 }
	 }

Ingest Normalize Correlate Prioritize Translate

https://marketplace.threatq.com

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 6www.threatquotient.com

There is much that we could pull from this sample record that is useful for analysis, detection,
investigation and response activities. However, for the scope of this paper, we’ll summarize
the elements within a data object into three different categories:

1.	 Threat Objects: Elements that can help to identify key objects to statefully track, and to
enable pivots across tools: Examples: Malware family names, identity data, file hash, urls,
IP addresses.

2.	 Object Context: Data that can enable the threat objects to be better understood.
Examples: The Malware family name, the fact that c2 communications has been observed
(and to where), identity information showing who has been impacted by it.

3.	 Event Observation Metadata: This is information about the occurrence of a sighting or
event raised, including elements that are specific to the use case of the reporting product
or system. Examples: Detailed information about file contents, network flow or event
identifiers. Generally, details are related to one specific observation.

If the goal is a dataset that can enable better coordination across existing systems and
help users to take actions that span across systems, then we should focus on the first two
categories, since doing so will enable simplified pivoting between tools, systems and datasets
via a common denominator, but with added security context. To achieve this goal, we must
also normalize the data.

The third category of data, event observation metadata, always has value and it is common
to need some of it, but this is classically where existing data stores (e.g., Log repositories
and SIEMs) have focused. So, it’s best to only take tactical elements to avoid falling into the
“proliferation of datastores” trap.

Normalize

Normalization of data is a complex subject, but the scope of our needs allows us to
simplify the goal. We need confidence that it is possible to identify functionally identical
objects across different data sources when they are described in slightly different ways. For
object values, the following must be considered with data normalization:

	z Character encodings

	z Whitespace

	z Text case, in the context of the data being reported

	z De-fang/re-fang processes (e.g., hxxp://example[.]com)

	z Protocol specific elements, such as port number handling in urls (http://example.com:80
vs. http://example.com)

Normalization requirements extend beyond the object values to all the object context
that is provided with them. The DataLinq Engine uses a configuration-driven approach to
control how this context is normalized. Here are two small example snippets showing how
timestamps are automatically normalized, and normalized mappings can be applied.

http://example.com:80
http://example.com

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 7www.threatquotient.com

	 filters:
		 - parse-json
		 - get: results
		 - iterate
		 - filter-mapping:
			 created: timestamp
			 modified: timestamp

Figure 1: Configuration controlled parsing of an array of JSON objects, with timestamp parsing
applied to created and modified keys

	 - name: Target Industry
 		 value: !expr value.industries or []
 		 published_at: !expr value.created

Figure 2: Iterating over an array of context in an industries key

The DataLinq Engine breaks apart these complex data structures related to events, incidents
and threat intelligence into atomic elements, so it can rebuild them with an aggregated view
of the data from across all the sources, tools, services and users. This is critical to allow the
correlation into a unified object to occur between different reporting sources, and also to
relate other unified objects.

Correlate

By ensuring a solid foundation of object values, we can also use it for automatically or
manually gathering supporting information about an object from integrated products. For
example, a file hash alone may involve:

	z EDR: Does this file hash appear on any endpoints, and what are they?

	z AV/SIEM: Are any security events reported about this hash?

	z Sandbox: Are there malware analysis reports, and what were the results?

	z Incident/Ticketing System: Has this hash been reported as an artifact associated with a
breach/incident in the past?

	z Intelligence: What adversaries, campaigns or malware families has this hash been
attributed to, and what were the goals, motivations and methods behind them? (Including
mappings to MITRE ATT&CK TTPs)

This is just the beginning of the detection and response investigation process. Consider the
other objects that exist within our single event, and the benefits realized by quickly answering
key questions by pulling from across the deployed defenses:

	z Who is this identity?
	z What are the methods behind the malware family detected?
	z What’s the history of that URL, or domain?
	z What additional context can be pulled in to validate if the C2 traffic detection is valid?

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 8www.threatquotient.com

This is where correlation comes in. As more data and context is learned, the engine
consistently updates the object records which also links it to additional sources, events and
tools. This correlation into a single record is essential to enable an assessment of priority or
relevance on an object, not only when it’s first seen, but continuously throughout its lifespan
as additional information is learned about it based on the sum of all information known.

Figure 3: A visual representation of security events, broken down into objects and then
presented as a correlated whole

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 9www.threatquotient.com

Prioritize

Though the prioritization of data objects is automated, it is under the control of the teams
using ThreatQ. Flexibility in how data is scored is key to ensure that the right threat objects
are identified allowing protections to be exported automatically to the right tools. Getting the
right data, to the right tools and at the right time, for the right organization has always been
the goal. Once the score of an object passes a threshold, it may trigger the auto deployment
of mitigations, additional analysis or responses.

Common questions addressed when prioritizing data include:

	z Is this IP address related to an active campaign we’re tracking?

	z Is this malware known to exploit a vulnerability we’re exposed to?

	z Is the actor behind this attack known to target organizations in our vertical?

	z Elements like these help to ensure the right objects are prioritized for action. However,
before taking action, additional translation back into the appropriate language and format
is needed.

Translate

The translation approach and process varies depending on the type of actions to be taken
against what form of external service or product. Consider the detection of a malicious FQDN:
evil.example.com. In order to have different tools take action on it, the detection data may
need to be defined in very different languages:

Figure 4: VMWare Carbon Black

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 10www.threatquotient.com

Figure 5: Cisco FirePOWER (Snort) language

Being able to automatically generate sets of detection data for consumption by detection
and prevention tools, focused on the use case of that tool, but with data that is prioritized to
ensure that resources are used intelligently is now possible because of DataLinq.

The Feedback Loop

Priorities, threats, campaigns and vulnerabilities are forever changing, therefore it’s important
to avoid considering any dataset to be dependable unless it takes this situation into account.
The DataLinq Engine supports a feedback loop where it consumes context that is detected
from those tools that have detection content deployed into them in addition to systems
that are providing enrichment services. This feedback loop enables additional context to be
learned over time as sightings can provide almost immediate updates to prioritization and
scoring data.

Accelerate Threat Detection & Response with DataLinq Engine

© ThreatQuotient, Inc. 11www.threatquotient.com

Summary

The SOC of the future is built on data, and teams have never had greater access to it. While
the data available from the various technologies, threat feeds and other third-party sources is
essential for threat detection and response, teams can quickly become overwhelmed by the
volume of data if care is not taken to properly manage it.

Security-forward teams are adopting a data-driven approach supported by an open
integration architecture and balanced use of automation when dealing with the evolving
nature of attacks. This approach best equips SOC teams to “connect the dots” across all
data sources, tools and teams to accelerate threat detection and response across the entire
organization.

the ThreatQ DataLinq Engine enables a data-driven approach across five key stages including
ingestion, normalization, correlation, prioritization and translation. Finally, SOC teams have
an efficient and effective way to make sense out of data and operationalize it where required.
To learn more about how to take a strategic approach to using data in the SOC to accelerate
detection, investigation and response, contact us at info@threatq.com for a demo.

© ThreatQuotient, Inc. TQ-BWP01-1121-01

ThreatQuotient improves security operations by fusing together disparate data sources, tools and teams to accelerate
threat detection and response. ThreatQuotient’s data-driven security operations platform helps teams prioritize,
automate and collaborate on security incidents; enables more focused decision making; and maximizes limited
resources by integrating existing processes and technologies into a unified workspace. The result is reduced noise, clear
priority threats, and the ability to automate processes with high fidelity data. ThreatQuotient’s industry leading data
management, orchestration and automation capabilities support multiple use cases including incident response, threat
hunting, spear phishing, alert triage and vulnerability prioritization, and can also serve as a threat intelligence platform.
ThreatQuotient is headquartered in Northern Virginia with international operations based out of Europe and APAC. For
more information, visit www.threatquotient.com.

https://www.threatq.com/threat-intelligence-platform/
https://www.threatq.com

	Data & the SOC of the Future
	Introducing DataLinq
	How the DataLinq Engine Works
	Summary

